

综合試驗有限公司 SOILS&MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@clgismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA0907 02		Page	1	of	2
Item tested						
Description:	Sound Level Mete	er (Type 1)	Microphone		Preamp	
Manufacturer:	B&K		B&K		B&K	
Type/Model No.:	2250-L		4950		ZC0032	
Serial/Equipment No.:	3006790		2827240		21213	
Adaptors used:			4		*	
Item submitted by						
Customer Name:	Lam Geotechnics	Limited				
Address of Customer:						
Request No.:	-					
Date of receipt:	07-Sep-2018					
Date of test:	10-Sep-2018					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:		Traceabl	e to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019		CIGISMED	Sec. 10
Signal generator	DS 360	33873	24-Apr-2019		CEPREI	
Signal generator	DS 360	61227	23-Apr-2019		CEPREI	
Ambient conditions						
Temperature:	21 ± 1 °C					
Relative humidity:	50 ± 10 %					
Air pressure:	1005 ± 5 hPa					
Test succifications						
Test specifications						

- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng

10-Sep-2018 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Sold & Materials Engineering Co. Ltd.

Form No. CARP 152-Literuar 1/Rev. CK01002/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 懐 12/F, Leader Centre, 37 Wong Chuk Hang Road, Aberderin, Hong Kong. E-mail: smec@cligismec.com Website: www.cligismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0907 02

2 of 2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	A C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range . Step 5 dB at 4 kHz	Pass	0.3	
, , ,	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range . Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
and the second second second	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting 1	Single burst 5 ms at 2000 Hz	Pass	0.3	
Contraction and Constanting of the	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leg	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
0.0010100000000000000000000000000000000	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End Calibrated by: Checked by: Fung Chi Yip sk Kweng Tat 10-Sep-2018 Date: 10-Sep-2018 Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

O Sale & Materials Ergenütring Cit. Ltd.

Form No CARP 152 24ssue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

Model Number	CAL20	0	Procedure Number	D0001	8385	
Serial Number	13098		Technician	Scott f	Montgo	mery
Test Results	Pass		Calibration Date	29 Oct 2018		
	and a	Calibration Due				
Initial Condition	Inopera	sole	Temperature	23	*C	± 0.3 °C
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH
			Static Pressure	101.2	kPa	±1 kPa
Evaluation Metho	od	The data is aquired by the insert volta circuit sensitivity. Data reported in dB	500 XM 200 CM 570	ne refere	nce mic	crophone's open
Compliance Stan	dards	Compliant to Manufacturer Specificat IEC 60942:2017	ions per D0001.8190 and the ANSI S1.40-2006	following	standa	ards:

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used	1	
Cal Date	Cal Due	Cal Standard
09/06/2018	09/06/2019	001021
04/10/2018	04/10/2019	001051
03/07/2018	03/07/2019	005446
09/20/2018	09/20/2019	006506
08/07/2018	08/07/2019	006507
05/10/2018	05/10/2019	006510
07/18/2018	07/18/2019	007368
	Cal Date 09/06/2018 04/10/2018 03/07/2018 09/20/2018 08/07/2018 05/10/2018	09/06/2018 09/06/2019 04/10/2018 04/10/2019 03/07/2018 03/07/2019 09/20/2018 09/20/2019 08/07/2018 08/07/2019 05/10/2018 05/10/2019

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/29/2018 1-43-01PM

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 徳 黄 竹 坑 砲 3 7 號 利 達 中 心 1 2 樓 12F., Loader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

24-Apr-2019

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1220 02		Page:	1 of 2
Item tested				
Description:	Acoustical Calib	ator (Class 1)		
Manufacturer:	Larson Davis	2010/07/07/07/07		
Type/Model No.:	CAL200			
Serial/Equipment No.:	13128			
Adaptors used:	(0.259350) 55			
Item submitted by				
Curstomer:	Lam Environmer	tal Service Ltd.		
Address of Customer:				
Request No.:	ini Marananana			
Date of receipt:	20-Dec-2018			
Date of test:	28-Dec-2018			
Reference equipment	used in the cali	bration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	SCL
Preamplifier	B&K 2673	2239857	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	89038	GB41300350	23-Apr-2019	CEPREI

Ambient conditions

Universal counter

Temperature:	20 ± 1 °C
Relative humidity:	50 ± 10 %
Air pressure:	1000 ± 5 hPa

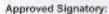
53132A

Test specifications

1. The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

MY40003662

- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- З, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference. pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.


Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942, 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

al

Fend

Jungi

29-Dec-2018 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Material's Engineering Coll Ltd.

Farm No. CARP106-54ssue 1/Rev. Dt01/03/2007

CEPREI

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 進 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1220 02

2 Page:

Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	d8	dB
1000	94.00	93.84	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.006 dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 999.4 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2:2	

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was

At 1000 Hz	TND = 0.4%
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	1
Calibrated by:	$1 - \chi$	Checked by:	Aque
Date:	28-Dec-2018	Date:	Shek Kwong Tat 29-Dec-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

ID Solis & Materials Engineering Co., Ltd.

Form No.CARP198-24soue 1/Rev.CI01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

15	30	Cŀ		7)		D	ALIBRATION UE DATE: ary 11, 2020
vir	Ce	rtifa	a I			2002/02/2020	ation	
-	12 10 124		Contraction of the local division of the loc				0.97	
Cal. Date:	January 11,	2019	Rootsn	neter S/N:	438320		293	°К
Operator:	Jim Tisch					Pa:	760.7	mm Hg
Calibration	Model #:	TE-5025A	Calib	rator S/N:	0005			
		Vol. Init	Mat. Plant	avet	ATT	4.0		1
	Bun	10.000	Vol. Final	ΔVol.	∆Time (min)	ΔP	ΔH (i= μ2O)	
	Run	(m3)	(m3)	(m3)	(min) 1.4090	(mm Hg)	(in H2O)	
	1	1	2	1	the state of the s	3.2	2.00	1
	2	3	4	1	0.9980	6.4	4.00	1
	3	5	6	1	0.8900	7.8	5.00	1
	4	9	8	1	0.8450	8.7	5.50	4
	>	э	10	1	0.6990	12.6	8.00	
			D	ata Tabulat	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	Tstd)		Qa	√∆н(та/Ра)	
	(m3)	(x-axis)	(y-axis	5)	Va	(x-axis)	(y-axis)	
	1.0138	0.7195	1.426	9	0.9958	0.7067	0.8777	
	1.0095	1.0115	2.018	0	0.9916	0.9936	1.2412	
	1.0076	1.1321	2.256	1	0.9897	1.1121	1.3877	
	1,0064	1.1910	2.366	3	0.9886	1.1699	1.4555	
	1,0012	1.4323	2.853		0.9834	1.4059	1.7553	
		m=	1.998			m=	1.25149	
	QSTD	b=	-0.008		QA	b=	-0.00543	
		r=	0.999	97		r=	0.99997	
				Calculation	15			
			/Pstd)(Tstd/Ta) [∆Vol((Pa-∆i	P)/Pa)	
	Qstd=	√std/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	e calculation	ts:		
	Qstd=	1/т ((√Δн(-	$\frac{Pa}{Pstd}$ $\left(\frac{Tstd}{Ta}\right)$)-b)	Qa=	$1/m \left(\sqrt{\Delta F} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:	and the second se			- E		RECA	LIBRATION	
Pstd:		mm Hg						1000
		еү					nnual recalibratio	
		er reading (in					Regulations Part !	The second s
		ter reading (mm Hg)				, Reference Meth	
and a second s	osolute temp	essure ("K)					ended Particulati re, 9.2.17, page 1	
las actual he								

ch Environmental, Inc.

Ľ

5 South Miami Avenue

lage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	ACL1	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS014	Calbration Due Date	: _	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient (Condition					
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg		
			Orifice Tr	ansfer Sta	andard Infor	mation				
Equipment No.		Ori0005		Slope, m _c	m _c 1.99861 Intercep			-0.00882		
Last Calibration Date		11-Jan-19			$(H \times P_a / 1013.3 \times 298 / T_a)^{1/2}$					
Next Calibration Date		11-Jan-20			=	m _c	x Q _{std} + b _c			
Calibration of TSP										
Calibration	Mar	Manometer Reading			Q _{std}	Conti	nuous Flow	IC		
Point	H (inches of water)			(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$		
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis		
1	1.3	1.3	2.6	0.	8215		36	36.4610		
2	2.3	2.3	4.6	1.	0913		44	44.5634		
3	3.4	3.4	6.8	1.3	3259		51	51.6530		
4	4.4	4.4	8.8	1.	5077		57	57.7299		
5	5.9	5.9	11.8	1.	7452		62	62.7939		
By Linear Regression of	Y on X									
	Slope, m	=	29.0	823	Inte	ercept, b	= 12	.8825		
Correlation Co	pefficient*	=	0.99	979						
Calibration	Accepted	=	Yes/ł	\o **						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	ACL1	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS014	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient C	Condition						
Temperature, T _a		294	ļ	Kelvin	Pressure, P	a	1	1013 mmHg			
			Orifice T	ransfer Sta	andard Inforr	nation					
Equipment No.		0005		Slope, m _c	1.9986	61	Intercept, bc	-0.00882			
Last Calibration Date		11-Jan-19			(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}			
Next Calibration Date		11-Jan-20			=	m _c	x Q _{std} + b _c				
Calibration of TSP											
Calibration	Mar	Manometer Reading			ຊ _{std}	Conti	nuous Flow	IC			
Point	Н (і	H (inches of water)			/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)			
	(up)	(down)	(difference)	X.	-axis		(CFM)	Y-axis			
1	1.3	1.3	2.6	0.	8165		34	34.2254			
2	2.3	2.3	4.6	1.	0847		44	44.2918			
3	3.5	3.5	7.0	1.	3370		50	50.3315			
4	4.5	4.5	9.0	1.	5154		56	56.3713			
5	5.6	5.6	11.2	1.	6900		60	60.3978			
By Linear Regression of	Y on X										
	Slope, m	=	29.72	204	Inte	ercept, b	= 10).8223			
Correlation Co	cefficient*	=	0.99	965	_						
Calibration	Accepted	=	Yes/	No**	_						

* if Correlation Coefficient < 0.990, check and recalibration again.

Henry Lau

16-Apr-19

** Delete as appropriate.

:

:

Remarks :

Calibrated by

Checked by

Date

Dean Chan

:

•

16-Apr-19

Date

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	ACL2a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS011	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient (Condition					
Temperature, T _a		291		Kelvin	Pressure, P	а	1	015 mmHg		
			Orifice Tr	ansfer Sta	andard Inform	nation				
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882		
Last Calibration Date		11-Jan-19			$(H \times P_a / 1013.3 \times 298 / T_a)^{1/2}$					
Next Calibration Date		11-Jan-20			=	m _c	xQ _{std} +b _c			
Calibration of TSP										
Calibration	Mar	Manometer Reading) _{std}	Continuous Flow		IC		
Point	H (inches of water)			(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$		
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis		
1	1.5	1.5	3.0	0.	8821		28	28.3585		
2	2.3	2.3	4.6	1.	0913		36	36.4610		
3	3.6	3.6	7.2	1.3	3642		45	45.5762		
4	4.8	4.8	9.6	1.	5745		52	52.6658		
5	6.2	6.2	12.4	1.	7889		58	58.7427		
By Linear Regression of	Y on X									
	Slope, m	=	33.5	323	Inte	ercept, b	=0	.5792		
Correlation Co	pefficient*	=	0.99	988						
Calibration	Accepted	=	Yes/	\o **						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						
Calibrated by	:	Henry Lau		Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	_	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	ACL2a	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS011	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient C	Condition					
Temperature, T _a		294		Kelvin	Pressure, P	a	1	1013 mmHg		
			Orifice Tr	ransfer Sta	andard Inforr	nation				
Equipment No.	[0005		Slope, m _c	1.9986	61	Intercept, bc	-0.00882		
Last Calibration Date		11-Jan-19			$(H \times P_a / 1013.3 \times 298 / T_a)^{1/2}$					
Next Calibration Date	11-Jan-20				$= m_{c} \times Q_{std} + b_{c}$					
Calibration of TSP										
Calibration	Mar	Manometer Reading			ຊ _{std}	Continuous Flow		IC		
Point	Н (і	H (inches of water)			/ min.)	Red	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	-axis		(CFM)	Y-axis		
1	1.3	1.3	2.6	0./	8165		25	25.1658		
2	2.2	2.2	4.4	1./	0609		35	35.2321		
3	3.5	3.5	7.0	1.:	3370		44	44.2918		
4	4.7	4.7	9.4	1./	5486		54	54.3581		
5	5.6	5.6	11.2	1./	6900		60	60.3978		
By Linear Regression of	Y on X									
	Slope, m	=	39.8	983	Int/	ercept, b	=7	.6042		
Correlation Co	cefficient*	=	0.99) 83	_					
Calibration	Accepted	=	Yes/ I	No**	_					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						-
Calibrated by	:	Henry Lau	Checked by	:	Dean Chan	-
Date	:	16-Apr-19	Date	:	16-Apr-19	_

Information supplied	by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO.:	
CLIENT:	LAM GEOTECHNICS LIMITED	JOB REFERENCE NU.:	22787053-B23V2601
DATE RECEIVED:	31/01/2019		
DATE OF ISSUE:	31/01/2019		
ADDRESS:	11/F, CENTRE POINT, 181-185, GI	OUCESTED DOAD	
	WANCHAI, HONG KONG	LOUCESTER ROAD,	
PROJECT:			

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807077	
Equipment No.:	100/0/7	
Date of Calibration:	31/01/2019	
Remarks:	51/01/2017	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai Sze Senior Chemist Issue Date: 31/01/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22787053-B23V2601
DATE OF ISSUE:	31/01/2019
CLIENT:	LAM GEOTECHNICS LIMITED

Turbidimeter	
31/01/2019	
	Turbidimeter Xin Rui WGZ-3B 1807077 31/01/2019 30/04/2019 H190048-01

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		_
4	3.88	-3.0%	
10	9.44	-5.6%	
40	41.24	3.1%	
100	100.00	0.0%	
400	400	0.0%	
1000	996	-0.4%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Information supplied	l by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO.:	11707052 D12104404
CLIENT:	LAM GEOTECHNICS LIMITED	COD REFERENCE NO	22787053-B23V2602
DATE RECEIVED:			
DATE OF ISSUE:	31/01/2019		
ADDRESS:	11/F, CENTRE POINT, 181-185, GI	LOUCESTER ROAD	
	WANCHAI, HONG KONG	Lo coloren ROAD,	
PROJECT:			

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
E uipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807079	
Equipment No.:		
Date of Calibration:	31/01/2019	
Remarks	01/01/2019	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai ze

Senior Chemist

Issue Date: 31/01/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22787053-B23V2602
DATE OF ISSUE:	31/01/2019
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807079	
Equipment No.:		
Date of Calibration:	31/01/2019	
Date of next Calibation:	30/04/2019	
Lab ID:	H190048-02	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.94	-1.5%	
10	10.01	0.1%	
40	39.89	-0.3%	
100	98.91	-1.1%	
400	396	-1.0%	
1000	1000	0.0%	
	Tolerance Limit (±)	10%	_

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Information supplied	by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO .:	22777053-C18V5302
CLIENT:	LAM ENVIRONMENTAL SI	ERVICES LTD	
DATE RECEIVED:	18/03/2019		
DATE OF ISSUE:	27/03/2019		
ADDRESS:	11/F, CENTRE POINT, 181-1	85, GLOUCESTER ROAD,	
	WANCHAI, HONG KONG	54 E	
PROJECT:	(mm)		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807063	
Equipment No.:	a 344	
Date of Calibration:	22/03/2019	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai Sze

Senior Chemist

Issue Date:

27/03/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22777053-C18V5302
DATE OF ISSUE:	27/03/2019
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807063	
Equipment No.:		
Date of Calibration:	22/03/2019	
Date of next Calibation:	21/06/2019	
Lab ID:	H190085-02	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	4.00	0.0%	
10	9.92	-0.8%	
40	39.54	-1.2%	
100	99.08	-0.9%	
400	404	1.1%	
1000	922	-7.8%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.I., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR CHAN KA CHUN

CLIENT: LAM ENVIRONMENTAL LTD

ADDRESS: 11/F, CENTRE POINT, 181 - 185 GLOUCESTER ROAD WAN CHAI, HONG KONG WORK ORDER: HK19

HK1900006

SUB-BATCH: 0 LABORATORY: HONG KONG DATE RECEIVED: 31- Dec- 2018 DATE OF ISSUE: 10- Jan- 2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or guoted from relevant international standards.

 Scope of Test:
 Dissolved Oxygen, pH Value, Salinity and Temperature

 Equipment Type:
 Multifunctional Meter

 Brand Name:
 YSI

 Model No.:
 Professional Plus

 Serial No.:
 14M100277

 Equipment No.:
 -

 Date of Calibration:
 10 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

no An

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK	ORDER:	HK1900006

SUB-BATCH:	0
DATE OF ISSUE:	10- Jan- 2019
CLIENT:	LAM ENVIRONMENTAL LTD
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Carlal Ma .	144100277

Serial No.: Equipment No.: Date of Calibration:

14M100277 10 January, 2019

Date of Next Calibration: 10 April, 2019

PARAMETERS: **Dissolved** Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.67	2.47	- 0.20
6.20	6.28	+0.08
8.88	8.83	- 0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.97	- 0.03
7.0	6.84	- 0.16
10.0	10.03	+ 0.03
12 (25)34.)	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.36	+3.6
20	18.90	- 5.5
30	27.77	- 7.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1900006			ALS
SUB-BATCH:	0			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DATE OF ISSUE:	10- Jan- 2019			
CLIENT:	LAM ENVIRONMENTAL LTD			
Equipment Type:	Multifunctional Meter			
Brand Name:	YSI			
Model No.:	Professional Plus			
Serial No.:	14M100277			
Equipment No.:	terrer i terrer			
Date of Calibration:	10 January, 2019	Date of Next Calibration:	10 April, 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	11.3	+ 0.8
21.0	19.8	- 1.2
40.5	39.4	- 1.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Ain

A

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	CHAN KA CHUN	WORK ORDER:	HK1912921
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD		
ADDRESS:	11/ F CENTRE POINT,	SUB-BATCH:	0
	181-185 GLOUCESTER ROAD,	LABORATORY:	HONG KONG
	WANCHAI, HONG KONG	DATE RECEIVED:	27- Mar- 2019
		DATE OF ISSUE:	02- Apr- 2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Dissolved Oxygen, pH Value, Salinity and Temperature Equipment Type: Multifunctional Meter

Equipment Type.	Multinunctional Met
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	14M100277
Equipment No.:	
Date of Calibration:	02 April, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Siz

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER: HK1912921

SUB-BATCH:	0
DATE OF ISSUE:	02- Apr- 2019
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD

Equipment Type: Brand Name [:]	Multifunctional Meter		
Model No.:	Professional Plus		
Serial No .:	14M100277		
Equipment No.:			
Date of Calibration:	02 April, 2019	Date of Next Calibration:	02 July, 2019
Brand Name: Model No.: Serial No.: Equipment No.:	YSI Professional Plus 14M100277	Date of Next Calibration:	02 July, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
2.85	2.66	- 0.19
5.99	5.79	- 0.20
8.54	8.57	+0.03
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.82	- 0.18
7.0	6.83	- 0.17
10.0	9.87	- 0.13
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.95	- 0.5
20	20.10	+ 0.5
30	30.03	+ 0.1
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Ling

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1912921			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02- Apr- 2019 LAM ENVIRONMENTAL SERV	ICES LTD		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 14M100277 02 April, 2019	Date of Next Calibration:	02 اىلى 02	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.0	8.2	- 0.8
23.0	22.6	- 0.4
40.0	39.3	- 0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Aij

)

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	MR CHAN KA CHUN	WORK ORDER:	HK1901813
CLIENT:	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/ F, CENTRE POINT,	SUB-BATCH:	0
	181 - 185 GLOUCESTER ROAD	LABORATORY:	HONG KONG
	WAN CHAI	DATE RECEIVED:	10-Jan-2019
		DATE OF ISSUE:	11- Feb- 2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	14K100322
Equipment No.:	
Date of Calibration:	18 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Cha Si

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS

WORK ORDER: HK1901813

SUB- BATCH:	0
DATE OF ISSUE:	11- Feb- 2019
CLIENT:	LAM ENVIRONMENTAL LTD
Equipment Type:	Multifunctional Meter
Brand Name:	YSI

Brand Name:YSIModel No.:Professional PlusSerial No.:14K100322Equipment No.:--Date of Calibration:18 January, 2019

Date of Next Calibration:

18 April, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
2.47	2.37	- 0.10
5.50	5.43	- 0.07
8.81	8.94	+0.13
	Tolerance Limit (mg/L)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.73	+7.3
20	19.43	- 2.9
30	30.69	+2.3
	Tolerance Limit (%)	±10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.0	- 1.0
22.0	21.6	- 0.4
41.5	42.2	+ 0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Alig

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	MR CHAN KA CHUN	WORK ORDER:	HK1903901
CLIENT:	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/F, CENTRE POINT,	SUB-BATCH:	0
	181 - 185 GLOUCESTER ROAD	LABORATORY:	HONG KONG
	WAN CHAI	DATE RECEIVED:	25-Jan-2019
		DATE OF ISSUE:	30-Jan-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pH Value and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No.:	14K100322
Equipment No.:	
Date of Calibration:	30 January, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

ALS

WORK ORDER: HK1903901

SUB- BATCH:0DATE OF ISSUE:30-Jan-2019CLIENT:LAM ENVIRONMENTAL LTD

Equipment Type:Multifunctional MeterBrand Name:YSIModel No.:Professional PlusSerial No.:14K100322Equipment No.:--Date of Calibration:30 January, 2019

Date of Next Calibration:

30 April, 2019

PARAMETERS:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.14	+0.14
7.0	6.99	-0.01
10.0	9.80	-0.20
	Tolerance Limit (pH unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.0	-1.0
22.0	21.6	-0.4
41.5	42.2	+0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	CHAN KA CHUN	WORK ORDER:	HK1914664
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD		
ADDRESS:	11/F CENTRE POINT,	SUB-BATCH:	0
	181-185 GLOUCESTER ROAD,	LABORATORY:	HONG KONG
	WANCHAI, HONG KONG	DATE RECEIVED:	04-Apr-2019
		DATE OF ISSUE:	11-Apr-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Dissolved Oxygen, pH Value, Salinity and Temperature

Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No.:	14K100322
Equipment No.:	
Date of Calibration:	10 April, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

WORK ORDER: HK1914664

0
11-Apr-2019
LAM ENVIRONMENTAL SERVICES LTD

Equipment Type:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	Professional Plus		
Serial No.:	14K100322		
Equipment No.:			
Date of Calibration:	10 April, 2019	Date of Next Calibration:	10 July, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
8.20	8.30	+0.10
6.04	5.98	-0.06
2.63	2.54	-0.09
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.87	-0.13
7.0	6.90	-0.10
10.0	9.84	-0.16
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.07	+0.7
20	20.20	+1.0
30	30.87	+2.9
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

1:5

Ms. Lin Wai Yu Assistant Manager - Inorganic

WORK ORDER:	HK1914664			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 11-Apr-2019 LAM ENVIRONMENTAL SER	VICES LTD		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 14K100322 10 April, 2019	Date of Next Calibration:	10 July, 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.5	10.4	+0.9
22.0	22.3	+0.3
40.0	39.7	-0.3
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT: CLIENT:	MR CHAN KA CHUN	WORK ORDER:	HK1901812
	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/F, CENTRE POINT,	SUB-BATCH:	0
	181 - 185 GLOUCESTER ROAD	LABORATORY:	HONG KONG
	WAN CHAI	DATE RECEIVED:	10-Jan-2019
		DATE OF ISSUE:	18-Jan-2019

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	17F100236
Equipment No.:	
Date of Calibration:	18 January, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Si

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS

WORK ORDER: HK1901812

SUB-BATCH:	0
DATE OF ISSUE:	18-Jan-2019
CLIENT:	LAM ENVIRONMENTAL LTD
Equipment Type:	Multifunctional Meter

Equipment Type:	Multifunctional Meter	
Brand Name:	YSI	
Model No.:	Professional Plus	
Serial No.:	17F100236	
Equipment No.:		
Date of Calibration:	18 January, 2019	Da

Date of Next Calibration:

18 April, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
2.65	2.45	- 0.20
6.02	5.92	- 0.10
8.88	8.94	+ 0.06
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
Expected Reading (pri unit)	Displayed Reading (pri unit)	
4.0	4.03	+0.03
7.0	7.08	+ 0.08
10.0	10.16	+0.16
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.20	+ 2.0
20	19.68	- 1.6
30	29.74	- 0.9
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1901812			S
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 18-Jan-2019 LAM ENVIRONMENTAL LTD			
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 17F100236 18 January, 2019	Date of Next Calibration:	18 April, 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.5	- 0.5
22.0	21.3	- 0.7
41.5	42.3	+ 0.8
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Aiz

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	CHAN KA CHUN	WORK ORDER:	HK1916521
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD		
ADDRESS:	11/F CENTRE POINT, 181-185 GLOUCESTER ROAD, WANCHAI, HONG KONG	SUB- BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 17-Apr-2019 25-Apr-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No.:	17F100236
Equipment No.:	
Date of Calibration:	24-Apr-2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

WORK ORDER: HK1916521

SUB-BATCH:	0
DATE OF ISSUE:	25-Apr-2019
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD

Equipment Type:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	Professional Plus		
Serial No.:	17F100236		
Equipment No.:			
Date of Calibration:	24-Apr-2019	Date of Next Calibration:	24-Jul-2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
8.15	8.07	-0.08
5.90	6.05	+0.15
2.64	2.69	+0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)	
4.0	4.00	+0.00	
7.0	7.20	+0.20	
10.0	10.05	+0.05	
	Tolerance Limit (pH unit)	±0.20	

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.86	-1.4
20	19.53	-2.3
30	29.81	-0.6
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

1:5

Ms. Lin Wai Yu Assistant Manager - Inorganic

WORK ORDER:	HK1916521			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 25-Apr-2019 LAM ENVIRONMENTAL SERV	ICES LTD		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 17F100236 24-Apr-2019	Date of Next Calibration:	24-Jul-2019	

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.5	9.7	+0.2
22.0	22.1	+0.1
38.5	38.2	-0.3
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu Assistant Manager - Inorganic